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Abstract

In this work we consider the problem of a thermoelastic half-space with a permeating substance in contact with the
bounding plane in the context of the theory of generalized thermoelastic diffusion with one relaxation time. The bound-
ing surface of the half-space is taken to be traction free and subjected to a time dependent thermal shock. The chemical
potential is also assumed to be a known function of time on the bounding plane. Laplace transform techniques are used.
The solution is obtained in the Laplace transform domain by using a direct approach. The solution of the problem in
the physical domain is obtained numerically using a numerical method for the inversion of the Laplace transform based
on Fourier expansion techniques.

The temperature, displacement, stress and concentration as well as the chemical potential are obtained. Numerical
computations are carried out and represented graphically.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Biot (1956) developed the coupled theory of thermoelasticity to deal with a defect of the uncoupled the-
ory that mechanical causes have no effect on the temperature. However, this theory shares a defect of the
uncoupled theory in that it predicts infinite speeds of propagation for heat waves.

Lord and Shulman (1967) introduced the theory of generalized thermoelasticity with one relaxation time
for the special case of an isotropic body. This theory was extended by Sherief (1980) and Dhaliwal and
Sherief (1980) to include the anisotropic case. In this theory, a modified law of heat conduction including
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both the heat flux and its time derivative replaces the conventional Fourier’s law. The heat equation asso-
ciated with this theory is hyperbolic and hence eliminates the paradox of infinite speeds of propagation
inherent in both the uncoupled and coupled theories of thermoelasticity. For this theory, Ignaczak
(1982) studied uniqueness of solution; Sherief (1987) proved uniqueness and stability. Anwar and Sherief
(1988a) and Sherief (1993) developed the state space approach to this theory. Anwar and Sherief
(1988b) completed the integral equation formulation. Sherief and Hamza (1994) and Sherief and Hamza
(1996) solved some two-dimensional problems and studied wave propagation. Sherief and El-Maghraby
(2003) solved a problem for an internal penny shaped crack.

Diffusion can be defined as the random walk, of an ensemble of particles, from regions of high concen-
tration to regions of lower concentration. There is now a great deal of interest in the study of this phenom-
enon, due to its many applications in geophysics and industrial applications. In integrated circuit
fabrication, diffusion is used to introduce “dopants” in controlled amounts into the semiconductor sub-
strate. In particular, diffusion is used to form the base and emitter in bipolar transistors, form integrated
resistors, form the source/drain regions in MOS transistors and dope poly-silicon gates in MOS transistors.
In most of these applications, the concentration is calculated using what is known as Fick’s law. This is a
simple law that does not take into consideration the mutual interaction between the introduced substance
and the medium into which it is introduced or the effect of the temperature on this interaction.

Nowacki (1974a,b,c,d) developed the theory of thermoelastic diffusion. In this theory, the coupled
thermoelastic model is used. This implies infinite speeds of propagation of thermoelastic waves. Recently,
Sherief et al. (2004) developed the theory of generalized thermoelastic diffusion that predicts finite speeds of
propagation for thermoelastic and diffusive waves.

2. Formulation of the problem

We consider the problem of an isotropic thermoelastic half-space (x > 0) with a permeating substance
(such as a gas) in contact with the upper plane of the half-space (x = 0). The x-axis is taken perpendicular
to the upper plane pointing inwards. This upper plane of the half-space is taken to be traction free and sub-
jected to a time dependent thermal shock. The chemical potential is also assumed to be a known function of
time on the upper plane. All considered functions are assumed to be bounded and vanish as x — oo.

The equation of motion in the absence of body forces is given by Sherief et al. (2004)

pit; = pu; j; + (A4 pu;; — BT — B,C, (1)

where u; are the components of the displacement vector, 7 is the absolute temperature, C is the concentra-
tion of the diffusive material in the elastic body, 4, u are Lamé’s constants, p is the density ff; and f3, are
material constants given by

By = (34+ 21 and B, = (34 + 2,

o, is the coefficient of linear thermal expansion and o, is the coefficient of linear diffusion expansion.
The energy equation has the form Sherief et al. (2004)

kT”-l- = pCE(T + ‘L'()T) + ﬁ] T()(ékk + T()ékk) + aTo(C + ’E()C), (2)

where k is the thermal conductivity, cg is the specific heat at constant strain, 7 is the thermal relaxation
time, ‘@’ is a measure of thermodiffusion effect and T is a reference temperature assumed to obey the
inequality |(T — To)/Ty| < 1 and e; are the components of the strain tensor given by

1
€ =5 (i) + ;). (3)
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The diffusion equation has the form Sherief et al. (2004)

Dpseii + DaT,; + C +1C — DbC; = 0, (4)

where D is the diffusion coefficient, 5 is a measure of diffusive effect and 7 is the diffusion relaxation time.
The constitutive equations have the form Sherief et al. (2004)

0y = 2uey; + Syl[lew — Bi(T — To) — B,C, (5a)

P= —ﬁlekk + bC — a(T - T()), (Sb)

where o;; are the components of the stress tensor and P is the chemical potential.
It follows from the description of the problem that all considered functions will depend on x and ¢ only.
We thus obtain the displacement components of the form

u=u(x,t), u,=u,=0. (6)
The strain components are given by
e =DuU, ey=e;=ey=e,=e,=0,

where ¥ = L.
The cubical dilatation e = ¢ is equal to

e = Yu. (7)
From Eq. (5a), it follows that the stress tensor components have the form
U:Jx.x:(}"+2M)‘@u_ﬁl(T_T0)_ﬁ2C7 (83)
Oy = 0z = 19Du — ﬁl(T - TO) - ﬁ2C7 (8b)
Oy =0y, = 0, = 0. 9)
Egs. (1), (2) and (4) thus reduce to
pit = u2*u+ A+ p%e — B,2T — B,9C, (10)
kDT = peg(T + 107 + P, To(Zit + 10Zit) + aTo(C + 10C), (11)
Dp,Z*e + Da%*T + C + 1C — DbZ*C = 0. (12)
By using Eq. (7), Egs. (10)—(12) can be written as
pii=(A+20)Pe — p,2T — p,2C, (13)
kDT = peg(T +107) + P, To(é + 10¢) + aTo(C + 1oC), (14)
Dp,Z*e + DaZ*T + C + 1C — DbZ*C = 0. (15)

The governing equations can be put in a more convenient form by using the following non-dimensional
variables

X'=cinx, u =cnu, = cfiqt, T, = C%”Ifo, Tt = c%m,
9* _ ﬂl(T - TO) * ﬁZC * £ ot = Oij
A4+2u A42u’ B, U i+2u
where ¢ = (2 +2p)/p, n = pcglk.
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Using the above non-dimensional variables Eqs. (13)—(15), take the following form where we have
dropped the asterisks for convenience

it=9%u— 90 - 9C, (16)
D0 = 0+ 190 + €& + 108 + €0, (C + 1), (17)
F*e + 0,90 + a0, (C 4+ 1C) — 132°C = 0, (18)
where

BiTo a(Z +2u) A+2p b(Z +2p)

E=——" "7, U =—(pp—, M=, W=
pee(4+2p) B, Dy >
Also Egs. (5b) and (8) take the form

on=e—0—C, (19a)
Oy =0.=(1-2/pe—0-C, (19b)
P=03C—e— o0, (20)

where %= (1 + 2u)/pu.
The initial conditions of the problem are taken to be homogeneous while the boundary conditions are
assumed to be

o(x, 1)l =0, olx0)],_. =0, (21)
0()67 t) |x:0 = fl(t)J Q(X, t)|x:oc =0, (22)
P(x,1)|,—g = f2(t), P(x,0)],_oc =0, (23)

where f1(¢) and f5(¢) are known functions of .

3. Solution in the Laplace transform domain

Introducing the Laplace transform defined by the formula

fs) = /OC e f(¢)dt,

0

into Egs. (16-19) and (20) and using the homogeneous initial conditions, we obtain

s = 9*n— 20 — 9C, (24)
%0 = (s + 195*)[0 + ee + ea, C], (25)
F*e + 0,970 + [oa(s + 15%) — 1327 C = 0, (26)

Gn=2e¢—0—C, (27a)
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Gy =0.=(1-2/p)e—0-C,

qu;C—é—oq@.

Taking the divergence of Eq. (24), we obtain
(2% —s%)e— 2°0 — 2°C = 0.

Eliminating ¢ and C between Egs. (25), (26) and (29), we obtain
(2° — a1 Z* + ay2* — a3)0 = 0,

where

@ = § : [(1+ 7o8)(ore(oy +2) +az(e+ 1) = 1) + 0a(1 + 15) + 035],

S —
S2

a=—— [(1 + tos) (esog + o35 + o2 (& + 1)(1 + 15)) + o2s(1 + 75)],
5 —
st

as = (1 + ) (1 + 705).
o3 -1

In a similar manner we can show that e and C satisfy the equations
(@6 — (11@4 + 02@2 — 613)@‘ = 0,

(96 — a9+ a9 — a3)C =0,

Eq. (30) can be factorized as
(2° = )2 = I5)(Z% — k3)0 =0,

where k|, k>, and ks are the roots with positive real parts of the characteristic equation
K — aik* + ark® — a5 = 0.

The solution of Eq. (33) bounded for x > 0 has the form

3
0(x,s) = Z At
P

(35)

where A; = As) are parameters depending on s only. Note that the roots with negative real parts are not
included in Eq. (35) since they are unbounded as x — oo. It is worth mentioning here that the roots kq, k»

and kj are functions of s.
Similarly, the solution of Egs. (31) and (32) can be written as

3
e(x,s) = Z Ale™™,
i1

3

C(x,s) = Z Ale ™

P
where 4, and A} are parameters depending only on s.
Substituting from Egs. (35)—(37) into Egs. (25), (26) and (29), we get
R (L em)(s + )
Toe(s +1os?)[(1 4 o)k — oys?]

iy
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kP — [ + (e + 1)(s + 105%)] + 5°(1 + 705)

A7 = 2
(s + t05?)[(1 + op)k; — 0187

A.. (39)

We thus have

3 2772 2
k; k (1- +

e(x,s) Z e)(s 2 ) A"e_kix’ 40
e(s + 105 [(1 + an)k; — 0187

i=1

Aieik"x. (41)

—_ 3 —K® 4 (e + 1) (s + 105)] + 53 (1 + 105)
Z e(s + 1os2) [(1 4 o0)k7 — oy57]

Integrating both sides of Eq. (7) from x to infinity, and assuming that u vanishes at infinity, we obtain upon
using the relation (40)

_ _ k] = (1 = eon)(s + 708%)] kit
M(X7S) - ; E(S + T()Sz)[(l + O(])k? _ O(1S2] A,C . (42)

Substituting from Egs. (35), (40) and (41) into Egs. (27a) and (28), we get

3 2
— (1 —eoy)(s +708%)] , 4
Ax Aie ,X’ 43
g (XS +‘E()S ; 1—|—<11 k2—061S2] ( )
_ 1 3K — ks 1 2 31
Ples) = o (1 +18) k) — K[ + §8+ )(s +2ros )] +5°(1+ TOS)AI»e*"f". (44)
e(1 +18) S k(1 + on)k; — ous?]

In order to evaluate the unknown parameters 4;, 4, and A;, we shall use the Laplace transform of the
boundary conditions (21)—(23) together with Eqgs. (35), (43) and (44). We thus arrive at the following set
of linear equations

i A=)l tad] g

i—1 1+ O(] k — O(]Sz} (45)
3

ZA:' = f1(s), (46)

23: k?—kl.z[sz+(£+ 1)(S+’L’0s2)] +s3(l +’EOS) 4, :fz(s)s(l +’L’0S). (47)

i—1 k?[(l + Oll)kl-z — 06152] 062(1 + TS)

Solving the linear system of Egs. (45)—(47), we can obtain the parameters 4; — A3. This completes the solu-
tion of the problem in the Laplace transform domain.

4. Inversion of the Laplace transform

We shall now outline briefly the method used to invert the Laplace transforms in the above equations.
Let f(s) be the Laplace transform of a function f{¢). The inversion formula for Laplace transforms can be
written as Churchill (1972)
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1 d+ioo B
0 =50 [ ereds

where d is an arbitrary real number greater than all the real parts of the singularities of f(s).

Taking s = d + iy, and using Fourier series in the interval [0,2L], we obtain the approximate formula
Honig and Hirdes (1984)

N
F@0) =2 fu(t) =1/2¢o+ > ¢, for 0 <1< 2L,

k=1

where
edr ) B
e = fRe[el’f’"ﬂ f(d + ikn/L)]. (48)

Two methods are used to reduce the total error. First, the ‘Korrecktur’ method is used to reduce the dis-
cretization error. Next, the ¢ algorithm is used to reduce the truncation error and therefore to accelerate
convergence. The details of these methods can be found in Honig and Hirdes (1984). The values of d
and L are chosen according to the criteria outlined in Honig and Hirdes (1984).

5. Numerical results
For the purpose of numerical illustration, the problem was solved for the following choice of the func-
tions f1(¢) and f5(¢)
Si(t) = 00H(2),
f2(t) = PoH (1),

where 6y and P, are constants and H(¢) is the Heaviside unit step function.
We thus have

- 0
S1(s) :?07
Fals) =72,

The roots ki, k> and k3 of the characteristic equation are given by

1 .
ky = g[ZPSIU(Q) +ail,

ky = \/% {al — p(V3cos(q) + Sin(q))} ;

ks = \/% {al +p(\/§cos(q) — sin(q))},

where

.1
2a3 -9 27
p=/a} —3a, q:sm (r) and r = — 24 a1a32+ 4
3 2p
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The copper material was chosen for purposes of numerical evaluations. The material constants of the prob-

lem are thus given by in SI units Thomas (1980)
o =18954 kg/m*, 1,=0.02s, t©=02s,

Ty =293 K,
o = 1.78(10)7 K1,

cp = 383.1 J/(kg K), k=386 W/(mK),
1= 3.86(10)"" kg/(m s?),

A =17.76(10)" kg/(m s?),
0. =1.98(10)"* m*/kg; D =0.85(10)"° kgs/m*; a=1.2(10)"m>/(s>K); b=.9(10)°" m*/(kgs?).

Using these values, it was found that 1 = 8886.73, ¢ = 0.0168, ﬁ2 =4, o0y =543, a5 = 0.533 and a3 = 36.24.
It should be noted that a unit of non-dimensional time corresponds to 6.5(10)'? s while a unit of non-

dimensional length corresponds to 2.7(10)"% m.

The computations were carried out for two values of non-dimensional time, namely for ¢ = 0.05 and
t =0.075. The temperature, displacement, stress, concentration and chemical potential are shown in
Figs. 1-5, respectively. Dashed lines represent the case when ¢ = 0.075, while solid lines represent the case

when ¢ = 0.05.

In all these figures, it is clear that all the functions considered have a non-zero value only in a bounded
region of space and vanish identically outside this region. This region expands with the passage of time. The

0.02
0.00 f:'\m~--
1 1
1 1
0027}
1/
i
-0.04 !
11
Ji
-0.06 41
4
30—
0.4 0.6 0.8 1

0 0.2 .
X

Fig. 2. Displacement distribution.
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0 0.2 0.4 0.6 0.8 1
X

Fig. 3. Stress distribution.

Fig. 4. Concentration distribution.

Fig. 5. Chemical potential distribution.

edge of this region is the wave front which moves with a finite speed. This is not the case for the coupled and
uncoupled theories of thermoelasticity where an infinite speed of propagation is inherent and hence all the
considered functions have a non-zero (although may be very small) values for any point in the medium.
Although these results were calculated numerically with a precision of five digits, the solution for
x>0.923 when ¢ = 0.05 and for x = 1.38 was found to be zero correct to 12 decimal digits indicating that
the solution in this region is identically equal to zero.

For ¢t =0.05, we have three wave fronts at the positions x = 0.047, x = 0.352 and x = 0.923, approxi-
mately. Due to the coupling between the governing equations, the arrival of any wave front at a certain
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position affects all the considered functions. By numerical experimentation on the values of the functions
just before and just after the arrival of the wave fronts and by analogy to the wave propagation in general-
ized thermoelasticity Sherief and Hamza (1994), it was found that the first and second waves are mainly
thermo-mechanical in nature while the third wave affects diffusion mainly. The topic of wave propagation
in the theory of generalized thermoelastic diffusion is being treated by the authors and will be reported in a
future paper.

We note that the three wave fronts at the positions indicated above do not show for the temperature
(Fig. 1), the displacement (Fig. 2), the stress (Fig. 3), and the chemical potential (Fig. 5) because the values
of these discontinuities are very small (of the order of 0.001).
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