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Abstract

In this work we consider the problem of a thermoelastic half-space with a permeating substance in contact with the
bounding plane in the context of the theory of generalized thermoelastic diffusion with one relaxation time. The bound-
ing surface of the half-space is taken to be traction free and subjected to a time dependent thermal shock. The chemical
potential is also assumed to be a known function of time on the bounding plane. Laplace transform techniques are used.
The solution is obtained in the Laplace transform domain by using a direct approach. The solution of the problem in
the physical domain is obtained numerically using a numerical method for the inversion of the Laplace transform based
on Fourier expansion techniques.

The temperature, displacement, stress and concentration as well as the chemical potential are obtained. Numerical
computations are carried out and represented graphically.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Biot (1956) developed the coupled theory of thermoelasticity to deal with a defect of the uncoupled the-
ory that mechanical causes have no effect on the temperature. However, this theory shares a defect of the
uncoupled theory in that it predicts infinite speeds of propagation for heat waves.

Lord and Shulman (1967) introduced the theory of generalized thermoelasticity with one relaxation time
for the special case of an isotropic body. This theory was extended by Sherief (1980) and Dhaliwal and
Sherief (1980) to include the anisotropic case. In this theory, a modified law of heat conduction including
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both the heat flux and its time derivative replaces the conventional Fourier�s law. The heat equation asso-
ciated with this theory is hyperbolic and hence eliminates the paradox of infinite speeds of propagation
inherent in both the uncoupled and coupled theories of thermoelasticity. For this theory, Ignaczak
(1982) studied uniqueness of solution; Sherief (1987) proved uniqueness and stability. Anwar and Sherief
(1988a) and Sherief (1993) developed the state space approach to this theory. Anwar and Sherief
(1988b) completed the integral equation formulation. Sherief and Hamza (1994) and Sherief and Hamza
(1996) solved some two-dimensional problems and studied wave propagation. Sherief and El-Maghraby
(2003) solved a problem for an internal penny shaped crack.

Diffusion can be defined as the random walk, of an ensemble of particles, from regions of high concen-
tration to regions of lower concentration. There is now a great deal of interest in the study of this phenom-
enon, due to its many applications in geophysics and industrial applications. In integrated circuit
fabrication, diffusion is used to introduce ‘‘dopants’’ in controlled amounts into the semiconductor sub-
strate. In particular, diffusion is used to form the base and emitter in bipolar transistors, form integrated
resistors, form the source/drain regions in MOS transistors and dope poly-silicon gates in MOS transistors.
In most of these applications, the concentration is calculated using what is known as Fick�s law. This is a
simple law that does not take into consideration the mutual interaction between the introduced substance
and the medium into which it is introduced or the effect of the temperature on this interaction.

Nowacki (1974a,b,c,d) developed the theory of thermoelastic diffusion. In this theory, the coupled
thermoelastic model is used. This implies infinite speeds of propagation of thermoelastic waves. Recently,
Sherief et al. (2004) developed the theory of generalized thermoelastic diffusion that predicts finite speeds of
propagation for thermoelastic and diffusive waves.
2. Formulation of the problem

We consider the problem of an isotropic thermoelastic half-space (x P 0) with a permeating substance
(such as a gas) in contact with the upper plane of the half-space (x = 0). The x-axis is taken perpendicular
to the upper plane pointing inwards. This upper plane of the half-space is taken to be traction free and sub-
jected to a time dependent thermal shock. The chemical potential is also assumed to be a known function of
time on the upper plane. All considered functions are assumed to be bounded and vanish as x! 1.

The equation of motion in the absence of body forces is given by Sherief et al. (2004)
q€ui ¼ lui;jj þ ðk þ lÞuj;ij � b1T ;i � b2C;i; ð1Þ
where ui are the components of the displacement vector, T is the absolute temperature, C is the concentra-
tion of the diffusive material in the elastic body, k, l are Lamé�s constants, q is the density b1 and b2 are
material constants given by
b1 ¼ ð3k þ 2lÞat and b2 ¼ ð3k þ 2lÞac;
at is the coefficient of linear thermal expansion and ac is the coefficient of linear diffusion expansion.
The energy equation has the form Sherief et al. (2004)
kT ;ii ¼ qcEð _T þ s0€T Þ þ b1T 0ð _ekk þ s0€ekkÞ þ aT 0ð _C þ s0 €CÞ; ð2Þ

where k is the thermal conductivity, cE is the specific heat at constant strain, s0 is the thermal relaxation
time, �a� is a measure of thermodiffusion effect and T0 is a reference temperature assumed to obey the
inequality j(T � T0)/T0j 	 1 and eij are the components of the strain tensor given by
eij ¼
1

2
ðui;j þ uj;iÞ: ð3Þ
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The diffusion equation has the form Sherief et al. (2004)
Db2ekk;ii þ DaT ;ii þ _C þ s€C � DbC;ii ¼ 0; ð4Þ

where D is the diffusion coefficient, b is a measure of diffusive effect and s is the diffusion relaxation time.

The constitutive equations have the form Sherief et al. (2004)
rij ¼ 2leij þ dij½kekk � b1ðT � T 0Þ � b2C�; ð5aÞ

P ¼ �b1ekk þ bC � aðT � T 0Þ; ð5bÞ

where rij are the components of the stress tensor and P is the chemical potential.

It follows from the description of the problem that all considered functions will depend on x and t only.
We thus obtain the displacement components of the form
ux ¼ uðx; tÞ; uy ¼ uz ¼ 0: ð6Þ

The strain components are given by
exx ¼ Du; eyy ¼ ezz ¼ exy ¼ eyz ¼ ezx ¼ 0;
where D ¼ o
ox.

The cubical dilatation e = ekk is equal to
e ¼ Du: ð7Þ

From Eq. (5a), it follows that the stress tensor components have the form
r ¼ rxx ¼ ðk þ 2lÞDu� b1ðT � T 0Þ � b2C; ð8aÞ

ryy ¼ rzz ¼ kDu� b1ðT � T 0Þ � b2C; ð8bÞ

rxy ¼ ryz ¼ rzx ¼ 0: ð9Þ

Eqs. (1), (2) and (4) thus reduce to
q€u ¼ lD2uþ ðk þ lÞDe� b1DT � b2DC; ð10Þ

kD2T ¼ qcEð _T þ s0€T Þ þ b1T 0ðD _uþ s0D€uÞ þ aT 0ð _C þ s0 €CÞ; ð11Þ

Db2D
2eþ DaD2T þ _C þ s€C � DbD2C ¼ 0: ð12Þ
By using Eq. (7), Eqs. (10)–(12) can be written as
q€u ¼ ðk þ 2lÞDe� b1DT � b2DC; ð13Þ

kD2T ¼ qcEð _T þ s0€T Þ þ b1T 0ð _eþ s0€eÞ þ aT 0ð _C þ s0 €CÞ; ð14Þ

Db2D
2eþ DaD2T þ _C þ s€C � DbD2C ¼ 0: ð15Þ
The governing equations can be put in a more convenient form by using the following non-dimensional
variables
x� ¼ c1gx; u� ¼ c1gu; t� ¼ c21gt; s�0 ¼ c21gs0; s� ¼ c21gs;

h� ¼ b1ðT � T 0Þ
k þ 2l

; C� ¼ b2C
k þ 2l

; P � ¼ P
b2

; r�
ij ¼

rij

k þ 2l
;

where c21 ¼ ðk þ 2lÞ=q, g = qcE/k.
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Using the above non-dimensional variables Eqs. (13)–(15), take the following form where we have
dropped the asterisks for convenience
€u ¼ D2u�Dh �DC; ð16Þ

D2h ¼ _h þ s0€h þ e _eþ s0€eþ ea1ð _C þ s0 €CÞ; ð17Þ

D2eþ a1D
2h þ a2ð _C þ s€CÞ � a3D

2C ¼ 0; ð18Þ
where
e ¼ b2
1T 0

qcEðk þ 2lÞ ; a1 ¼
aðk þ 2lÞ

b1b2

; a2 ¼
k þ 2l

b2Dg
; a3 ¼

bðk þ 2lÞ
b2
2

:

Also Eqs. (5b) and (8) take the form
rxx ¼ e� h � C; ð19aÞ

ryy ¼ rzz ¼ ð1� 2=b2Þe� h � C; ð19bÞ

P ¼ a3C � e� a1h; ð20Þ
where b2 = (k + 2l)/l.
The initial conditions of the problem are taken to be homogeneous while the boundary conditions are

assumed to be
rðx; tÞjx¼0 ¼ 0; rðx; tÞjx¼1 ¼ 0; ð21Þ

hðx; tÞjx¼0 ¼ f1ðtÞ; hðx; tÞjx¼1 ¼ 0; ð22Þ

P ðx; tÞjx¼0 ¼ f2ðtÞ; P ðx; tÞjx¼1 ¼ 0; ð23Þ
where f1(t) and f2(t) are known functions of t.
3. Solution in the Laplace transform domain

Introducing the Laplace transform defined by the formula
�f ðsÞ ¼
Z 1

0

e�stf ðtÞdt;
into Eqs. (16–19) and (20) and using the homogeneous initial conditions, we obtain
s2�u ¼ D2�u�D�h �DC; ð24Þ

D2�h ¼ ðsþ s0s2Þ½�h þ e�eþ ea1C�; ð25Þ

D2�eþ a1D
2�h þ ½a2ðsþ ss2Þ � a3D

2�C ¼ 0; ð26Þ

�rxx ¼ �e� �h � C; ð27aÞ
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�ryy ¼ �rzz ¼ ð1� 2=b2Þ�e� �h � C; ð27bÞ

P ¼ a3C � �e� a1
�h: ð28Þ
Taking the divergence of Eq. (24), we obtain
ðD2 � s2Þ�e�D2�h �D2C ¼ 0: ð29Þ

Eliminating �e and C between Eqs. (25), (26) and (29), we obtain
ðD6 � a1D
4 þ a2D

2 � a3Þ�h ¼ 0; ð30Þ

where
a1 ¼
s

a3 � 1
½ð1þ s0sÞða1eða1 þ 2Þ þ a3ðe þ 1Þ � 1Þ þ a2ð1þ ssÞ þ a3s�;

a2 ¼
s2

a3 � 1
½ð1þ s0sÞðesa2

1 þ a3sþ a2ðe þ 1Þð1þ ssÞÞ þ a2sð1þ ssÞ�;

a3 ¼
s4a2

a3 � 1
ð1þ ssÞð1þ s0sÞ:
In a similar manner we can show that �e and C satisfy the equations
ðD6 � a1D
4 þ a2D

2 � a3Þ�e ¼ 0; ð31Þ

ðD6 � a1D
4 þ a2D

2 � a3ÞC ¼ 0; ð32Þ

Eq. (30) can be factorized as
ðD2 � k21ÞðD2 � k22ÞðD2 � k23Þ�h ¼ 0; ð33Þ

where k1, k2 and k3 are the roots with positive real parts of the characteristic equation
k6 � a1k
4 þ a2k

2 � a3 ¼ 0: ð34Þ

The solution of Eq. (33) bounded for x P 0 has the form
�hðx; sÞ ¼
X3

i¼1

Aie
�kix; ð35Þ
where Ai = Ai(s) are parameters depending on s only. Note that the roots with negative real parts are not
included in Eq. (35) since they are unbounded as x! 1. It is worth mentioning here that the roots k1, k2
and k3 are functions of s.

Similarly, the solution of Eqs. (31) and (32) can be written as
�eðx; sÞ ¼
X3

i¼1

A0
ie

�kix; ð36Þ

Cðx; sÞ ¼
X3

i¼1

A00
i e

�kix; ð37Þ
where A0
i and A00

i are parameters depending only on s.
Substituting from Eqs. (35)–(37) into Eqs. (25), (26) and (29), we get
A0
i ¼

k2i ½k2i � ð1� ea1Þðsþ s0s2Þ�
eðsþ s0s2Þ½ð1þ a1Þk2i � a1s2�

Ai; ð38Þ
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A00
i ¼

k4i � k2i ½s2 þ ðe þ 1Þðsþ s0s2Þ� þ s3ð1þ s0sÞ
eðsþ s0s2Þ½ð1þ a1Þk2i � a1s2�

Ai: ð39Þ
We thus have
�eðx; sÞ ¼
X3

i¼1

k2i ½k2i � ð1� ea1Þðsþ s0s2Þ�
eðsþ s0s2Þ½ð1þ a1Þk2i � a1s2�

Aie
�kix; ð40Þ

Cðx; sÞ ¼
X3

i¼1

k4i � k2i ½s2 þ ðe þ 1Þðsþ s0s2Þ� þ s3ð1þ s0sÞ
eðsþ s0s2Þ½ð1þ a1Þk2i � a1s2�

Aie
�kix: ð41Þ
Integrating both sides of Eq. (7) from x to infinity, and assuming that u vanishes at infinity, we obtain upon
using the relation (40)
�uðx; sÞ ¼ �
X3

i¼1

ki½k2i � ð1� ea1Þðsþ s0s2Þ�
eðsþ s0s2Þ½ð1þ a1Þk2i � a1s2�

Aie
�kix: ð42Þ
Substituting from Eqs. (35), (40) and (41) into Eqs. (27a) and (28), we get
�rxxðx; sÞ ¼
s

eð1þ s0sÞ
X3

i¼1

½k2i � ð1� ea1Þðsþ s0s2Þ�
½ð1þ a1Þk2i � a1s2�

Aie
�kix; ð43Þ

P ðx; sÞ ¼ a2ð1þ ssÞ
eð1þ s0sÞ

X3

i¼1

k4i � k2i ½s2 þ ðe þ 1Þðsþ s0s2Þ� þ s3ð1þ s0sÞ
k2i ½ð1þ a1Þk2i � a1s2�

Aie
�kix: ð44Þ
In order to evaluate the unknown parameters A1, A2 and A3, we shall use the Laplace transform of the
boundary conditions (21)–(23) together with Eqs. (35), (43) and (44). We thus arrive at the following set
of linear equations
X3

i¼1

½k2i � ð1� ea1Þðsþ s0s2Þ�
½ð1þ a1Þk2i � a1s2�

Ai ¼ 0; ð45Þ

X3

i¼1

Ai ¼ �f 1ðsÞ; ð46Þ

X3

i¼1

k4i � k2i ½s2 þ ðe þ 1Þðsþ s0s2Þ� þ s3ð1þ s0sÞ
k2i ½ð1þ a1Þk2i � a1s2�

Ai ¼
�f 2ðsÞeð1þ s0sÞ

a2ð1þ ssÞ : ð47Þ
Solving the linear system of Eqs. (45)–(47), we can obtain the parameters A1 � A3. This completes the solu-
tion of the problem in the Laplace transform domain.
4. Inversion of the Laplace transform

We shall now outline briefly the method used to invert the Laplace transforms in the above equations.
Let �f ðsÞ be the Laplace transform of a function f(t). The inversion formula for Laplace transforms can be
written as Churchill (1972)
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f ðtÞ ¼ 1

2pi

Z dþi1

d�i1
est�f ðsÞds;
where d is an arbitrary real number greater than all the real parts of the singularities of �f ðsÞ.
Taking s = d + iy, and using Fourier series in the interval [0,2L], we obtain the approximate formula

Honig and Hirdes (1984)
f ðtÞ ffi fN ðtÞ ¼ 1=2c0 þ
XN
k¼1

ck; for 0 6 t 6 2L;
where
ck ¼
edt

L
Re½eikpt=L�f ðd þ ikp=LÞ�: ð48Þ
Two methods are used to reduce the total error. First, the �Korrecktur� method is used to reduce the dis-
cretization error. Next, the e algorithm is used to reduce the truncation error and therefore to accelerate
convergence. The details of these methods can be found in Honig and Hirdes (1984). The values of d

and L are chosen according to the criteria outlined in Honig and Hirdes (1984).
5. Numerical results

For the purpose of numerical illustration, the problem was solved for the following choice of the func-
tions f1(t) and f2(t)
f1ðtÞ ¼ h0HðtÞ;

f2ðtÞ ¼ P 0HðtÞ;

where h0 and P0 are constants and H(t) is the Heaviside unit step function.

We thus have
�f 1ðsÞ ¼
h0

s
;

�f 2ðsÞ ¼
P 0

s
:

The roots k1, k2 and k3 of the characteristic equation are given by
k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
½2p sinðqÞ þ a1�

r
;

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
a1 � pð

ffiffiffi
3

p
cosðqÞ þ sinðqÞÞ

h ir
;

k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
a1 þ pð

ffiffiffi
3

p
cosðqÞ � sinðqÞÞ

h ir
;

where
p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 3a2

q
; q ¼ sin�1ðrÞ

3
and r ¼ � 2a31 � 9a1a2 þ 27a3

2p3
:
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The copper material was chosen for purposes of numerical evaluations. The material constants of the prob-
lem are thus given by in SI units Thomas (1980)
T 0 ¼ 293 K; r ¼ 8954 kg=m3; s0 ¼ 0:02 s; s ¼ 0:2 s;

cE ¼ 383:1 J=ðkg KÞ; at ¼ 1:78ð10Þ�5 K�1; k ¼ 386 W=ðm KÞ;

k ¼ 7:76ð10Þ10 kg=ðm s2Þ; l ¼ 3:86ð10Þ10 kg=ðm s2Þ;

ac ¼ 1:98ð10Þ�4 m3=kg; D ¼ 0:85ð10Þ�8 kg s=m3; a ¼ 1:2ð10Þ4 m2=ðs2 KÞ; b ¼ :9ð10Þ6 m5=ðkg s2Þ:
Using these values, it was found that g = 8886.73, e = 0.0168, b2 = 4, a1 = 5.43, a2 = 0.533 and a3 = 36.24.
It should be noted that a unit of non-dimensional time corresponds to 6.5(10)�12 s while a unit of non-

dimensional length corresponds to 2.7(10)�8 m.
The computations were carried out for two values of non-dimensional time, namely for t = 0.05 and

t = 0.075. The temperature, displacement, stress, concentration and chemical potential are shown in
Figs. 1–5, respectively. Dashed lines represent the case when t = 0.075, while solid lines represent the case
when t = 0.05.

In all these figures, it is clear that all the functions considered have a non-zero value only in a bounded
region of space and vanish identically outside this region. This region expands with the passage of time. The
0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

x

θ

Fig. 1. Temperature distribution.
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edge of this region is the wave front which moves with a finite speed. This is not the case for the coupled and
uncoupled theories of thermoelasticity where an infinite speed of propagation is inherent and hence all the
considered functions have a non-zero (although may be very small) values for any point in the medium.
Although these results were calculated numerically with a precision of five digits, the solution for
x > 0.923 when t = 0.05 and for x = 1.38 was found to be zero correct to 12 decimal digits indicating that
the solution in this region is identically equal to zero.

For t = 0.05, we have three wave fronts at the positions x = 0.047, x = 0.352 and x = 0.923, approxi-
mately. Due to the coupling between the governing equations, the arrival of any wave front at a certain
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position affects all the considered functions. By numerical experimentation on the values of the functions
just before and just after the arrival of the wave fronts and by analogy to the wave propagation in general-
ized thermoelasticity Sherief and Hamza (1994), it was found that the first and second waves are mainly
thermo-mechanical in nature while the third wave affects diffusion mainly. The topic of wave propagation
in the theory of generalized thermoelastic diffusion is being treated by the authors and will be reported in a
future paper.

We note that the three wave fronts at the positions indicated above do not show for the temperature
(Fig. 1), the displacement (Fig. 2), the stress (Fig. 3), and the chemical potential (Fig. 5) because the values
of these discontinuities are very small (of the order of 0.001).
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